Урок 8.4 Триггеры, регистры, счетчики
Урок 8.4 Триггеры, регистры, счетчики
Уроки

Урок 8.4 Триггеры, регистры, счетчики

На предыдущем уроке мы рассмотрели логические элементы, состояние сигнала на выходе которых однозначно определяется состояниями сигналов на входах.

Логические элементы служат основой для создания более сложных цифровых устройств, одним из которых является триггер. Триггер – это целый класс электронных  устройств, которые могут длительно находиться в одном из двух устойчивых состояний после прекращения сигнала, меняющего состояние. Состояние выхода триггера  определяется не только сигналами на его входах, но и предыдущим состоянием устройства. Таким образом, триггер является простейшей однобитной ячейкой памяти.

 

RS-триггер

Самый простой триггер можно получить из двух логических элементов 2ИЛИ-НЕ:

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики Самый простой триггер можно получить из двух логических элементов 2ИЛИ-НЕ 

Cхемотехническое  обозначение:

 Мастер Кит Урок 8.4 Триггеры, регистры, счетчики Cхемотехническое  обозначение триггера

Такая схема представляет собой асинхронный RS-триггер.

Он имеет два входа: S (set) – установка, R (reset) – сброс, и два выхода: Q (прямой)  и Q с чертой сверху (инверсный, НЕ_Q).

При подаче сигнала логического нуля на оба входа триггера, его выходы будут установлены в произвольное состояние. Допустим, Q = 0, а НЕ_Q =1. Если на вход S подать «1», то состояние выхода Q скачкообразно изменится на «1», а НЕ_Q  - на «0». И это состояние будет поддерживаться в независимости от того «0» или «1» подано на вход  S, что и является проявлением свойства памяти.

Соответственно, при подаче уровня «1» на вход R выход Q станет «0», а НЕ_Q – «1».

Длительность устанавливающих импульсов может быть очень короткой, и ограничена физическим быстродействием логических модулей, из которых построен триггер.

Ситуация, когда на входах R и S действует высокий уровень, является недопустимой, поскольку при этом схема не может работать корректно. В этом есть недостаток RS-триггера.

RS-триггер также можно построить из двух элементов И-НЕ, такие элементы более распространены:

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики RS-триггер также можно построить из двух элементов И-НЕ

Установка и сброс триггера на элементах 2И-НЕ, в отличие от предыдущего, производится низким уровнем входного сигнала.

Если к последней схеме добавить  еще два вентиля 2И-НЕ, то мы получим синхронный RS-триггер.

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики синхронный RS-триггер

Изменение состояния такого триггера производится только при воздействии на вход С (Clock) синхронизирующего (тактового) импульса.

 

D-триггер

Немного изменив схему синхронного RS-триггера, можно получить  D-триггер. (D-delay, задержка). У него только один информационный вход D.

Если на этот вход подать «1», а затем подать импульс на вход C, то на выходе Q будет «1», если на вход подать «0», затем импульс на C, то на выходе Q будет «0». Таким образом, D-триггер осуществляет задержку информации, поступающей на вход.

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики D-триггер

Если вход D соединить с выходом НЕ_Q, то триггер будет менять свое состояние при каждом изменении состояния входа С от «0» к «1» . При изменении от «1» к «0» состояние триггера меняться не будет. Таким образом, частота выходных импульсов будет вдвое меньше частоты входных импульсов. Такой триггер называется счетным или T-триггером. Делитель частоты используется очень широко в цифровой технике.

Существует разновидность синхронного RS-триггера, не имеющая запрещенной комбинации – JK-триггер. Он имеет три входа: J (вместо R), K (вместо S), и C. Если на оба информационных входа подана «1», то JK-триггер работает как счетный T-триггер с входом C.

 

Регистр хранения

На триггерах можно строить более сложные цифровые устройства, например такие, как регистры. Регистры предназначены для хранения многобитовой информации, то есть чисел, записанных в двоичном коде.

Рассмотри трех битовый регистр хранения на D-триггерах:

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики трех битовый регистр хранения на D-триггерах 

Каждый триггер может хранить один разряд (бит) числа. Вход R служит для установки выходов всех триггеров в нулевое (исходное) состояние перед записью числа, которое подается на входы D0,D1 и D2. При подаче импульса на вход C производится запись информации с этих входов. Информация может храниться сколь угодно долго, пока на вход С не подаются импульсы и подается питание.

 

Регистр сдвига

Другой разновидностью регистров является регистр сдвига. Он предназначен для преобразования информации путем ее побитного сдвига в ту или иную сторону. На следующем рисунке приведена схема простейшего регистра сдвига информации вправо (по схеме):

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики схема простейшего регистра сдвига информации вправо на D-триггер

В отличие от регистра хранения выход предыдущего триггера соединен с входом последующего. Информация в виде логического уровня подается на вход первого (крайнего слева) триггера. При воздействии импульса на входе C присутствующая на входе D информация записывается в первый триггер. При подаче второго импульса информация из первого триггера переписывается во второй триггер, а в первый записывается информация, которая в этот момент присутствует на входе D, и так далее. Таким образом, с подачей каждого синхроимпульса информация в регистре сдвигается вправо на 1 разряд.

Сдвиговые регистры используются во многих схемотехнических решениях при построении цифровых устройств, прежде всего для преобразования последовательного кода в параллельный, а также для выполнения арифметических операций (умножения и деления на 2)с двоичными числами, организации линий задержки, формирования импульсов заданной длительности, генерирования псевдослучайных последовательностей (кодов) и т.п.

 

Счетчик

Еще один класс цифровых устройств, которые можно построить на триггерах – счетчики. Как следует из названия, они осуществляют счет входных импульсов в заданном коде и могут хранить результат. 

Простейший счетчик с последовательным переносом можно получить с помощью счетных T-триггеров:

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики Простейший счетчик с последовательным переносом можно получить с помощью счетных T-триггеров

Мастер Кит Урок 8.4 Триггеры, регистры, счетчики

Подачей импульса на вход R счетчик приводится в исходное состояние, когда на выходах Q1-Q3 – уровень логического нуля.

На вход C подаются импульсы для счета. С приходом заднего фронта первого импульса первый (левый) по схеме триггер устанавливается в «1». Если читать код справа налево, то он соответствует единице. Для нашего трехразрядного счетчика это код 001. С приходом второго импульса в «1» переключается второй триггер, а первый переключается в «0». Таким образом, код на выходах счетчика будет 010, что соответствует  десятичной цифре 2. Следующий импульс установит код 011, то есть 3. Трехразрядный счетчик может досчитать до кода 111, что соответствует десятичной цифре 7. При этом наступает так называемое переполнение счетчика, и с приходом следующего импульса счетчик обнулится.

Поскольку триггеры счетчика соединены последовательно, то и переключаться они будут также последовательно. Этот процесс отображен на графике, из которого видно, что время задержки переключения tз будет удваиваться и утраиваться. С увеличением числа разрядов задержка может оказаться неприемлемой, что является недостатком счетчиков с последовательным переносом.

Для повышения быстродействия применяются счетчики с параллельным переносом, что достигается одновременной подачей входных импульсов на входы всех триггеров счетчика. Это реализуется с помощью введения в схему логических элементов И:

 Мастер Кит Урок 8.4 Триггеры, регистры, счетчики счетчики с параллельным переносом с помощью счетных T-триггеров

 

 Мастер Кит Урок 8.4 Триггеры, регистры, счетчики

 Из схемы видно, что на вход второго триггера счетный импульс поступит только тогда, когда на выходе первого триггера будет «1», а на третий – когда «1» будет на выходах и первого, и второго триггеров. Очевидно, что с увеличением числа разрядов необходимо увеличивать как число логических элементов И, так и число их входов, что, в свою очередь, является недостатком такого типа счетчиков.

Регистры и счетчики, в свою очередь, могут применяться для построения более сложных цифровых устройств: сумматоров, ОЗУ и ПЗУ (оперативных и постоянных запоминающих устройств),  АЛУ (арифметическо-логических устройств), входящих в состав процессоров, и так далее, к все более сложным цифровым устройствам.

В следующей серии статей мы начнем знакомство с микроконтроллерами - замечательным классом цифровых микросхем, которые являются настоящими компьютерами, умещающимися в одной микросхеме, и входящими входят в состав большинства электронных устройств, от кофемашины до космического корабля!

Рейтинг@Mail.ru

Почему выбирают Мастер Китнас


Мы в Сети


© 1999-2022 Мастер Кит