Вячеслав Чулков

 

Мастера хорошо знают, как часто в отказе аппарата виноват «высохший» электролитический конденсатор. Познакомьтесь с несложным и недорогим прибором, позволяющим достаточно достоверно проверить качество конденсаторов без их демонтажа. Его можно изготовить самостоятельно из набора Мастер Кит NM8032.

Существует обширный класс неисправностей радиоэлектронной аппаратуры, связанный с отказами электролитических конденсаторов. Электролитические конденсаторы – это сложные электрохимические устройства, содержащие жидкий активный электролит, в них применяется точечная сварка и клепка химически несовместимых металлов. Изготовление электролитических конденсаторов требует строгого соблюдения технологической дисциплины, так как малейшее ее нарушение ведет к отказам компонентов. Причем коварство этих отказов заключается в том, что их часто невозможно обнаружить при входном контроле, они проявляются только через несколько месяцев, а то и лет эксплуатации радиоаппаратуры. Кроме того, многие отказы электролитических конденсаторов не являются внезапными - они проявляются очень постепенно, в течение длительного времени. А так как электролитические конденсаторы используются чаще всего как фильтры питания и переходные конденсаторы, то аппаратура не перестает работать полностью, а происходит постепенное ухудшение качества ее работы. Увеличивается количество помех на экране телевизора, усилители начинают все больше «фонить», звук в них постепенно теряет басы, а управляющие микроконтроллеры все чаще начинают «сходить с ума». Потребители обычно такие отказы даже не относят к поломкам, а считают это естественным результатом старения аппаратуры. Но даже когда отказ конденсатора привел к полной неработоспособности устройства, то замена отказавшего конденсатора не гарантирует качественного ремонта. Ведь велика вероятность того, что и другие конденсаторы в устройстве уже находятся на грани отказа, и это приведет к повторным ремонтам и нареканиям со стороны заказчика. По этой причине некоторые ремонтники предпочитают в ответственных случаях заменять на плате все электролитические конденсаторы в случае отказа одного из них. Способ, конечно надежный, но весьма трудоемкий и дорогостоящий. Имея же прибор для внутрисхемной диагностики электролитических конденсаторов, можно быстро проверить их все и заменить только низкокачественные.

 

Методы оценки качества электролитических конденсаторов

Диагностика электролитических конденсаторов основывается на принципе: «сопротивление конденсатора должно быть бесконечно большим на постоянном токе и предельно малым на высокой частоте». Сопротивление конденсатора на постоянном токе легко проверить при помощи любого омметра постоянного тока, а для проверки сопротивления конденсаторов на высокой частоте существуют специальные приборы – измерители эквивалентного последовательного сопротивления (ESR). К сожалению, в нашей стране такие приборы пока мало распространены. В журнале РЭТ была публикация на эту тему [1]. Имеется также ряд описаний импортных приборов и методик [2-5]. Одним из самых лучших считается прибор ESR & Low Ohms Meter K 7204, описанние которого можно найти на сайте. Этот прибор построен на базе микроконтроллера, имеет три автоматически переключаемых диапазона измерений (0-0,99 Ом; 0-9,9 Ом; 0-99 Ом), индикацию результатов на двухразрядном семисегментном индикаторе. К недостаткам прибора можно отнести достаточно высокую стоимость, а также применение цифровой индикации. Цифровая индикация, необходимая при точных измерениях, оказывается достаточно неудобной для быстрых качественных оценок. К тому же конструкция щупов прибора, несмотря на использование цифровой коррекции, не позволяет проводить правильные измерения очень малых сопротивлений. Это связано с тем, что прибор измеряет модуль комплексного сопротивления цепи между своими клеммами, но она состоит из суммы сопротивления щупов и сопротивления тестируемого конденсатора. Теоретически можно вычесть сопротивление щупов из суммарного сопротивления цепи и получить точное значение сопротивления конденсатора. Но на практике комплексное сопротивление щупов в процессе измерений меняется из-за нестабильности контакта в клеммах прибора, изменения индуктивности проводов при изменении их взаимного расположения и влияния на них окружающих предметов. Все это не позволяет правильно оценивать сверхмалые сопротивления.

При разработке тестера для ремонтников было решено сделать прибор, работающий на принципе тестирования конденсатора переменным током фиксированной величины. В этом случае переменное напряжение на конденсаторе прямо пропорционально модулю его комплексного сопротивления. Такой прибор реагирует не только на увеличенное внутреннее сопротивление, но и на потерю конденсатором емкости, что тоже полезно. В приборе использован аналоговый индикатор на 10 светодиодах с логарифмической шкалой. Шкала измерителя нелинейна: сжата в области больших и растянута в области малых сопротивлений. Такая шкала удобна для считывания показаний и обеспечивает наглядный отсчет в широком диапазоне измерений. Для дополнительного расширения диапазона измерений в прибор введен переключатель диапазонов.

Другая особенность прибора - это использование четырехпроводной схемы подключения измерительных щупов. При такой схеме к измеряемому конденсатору двумя проводами подводится сигнал от генератора, а двумя другими проводами к тому же конденсатору подключается измерительная цепь. Между собой эти две пары проводов соединяются только на конденсаторе. При такой схеме подключения сопротивление соединительных проводов не влияет на результаты измерений, что позволило надежно регистрировать сопротивления порядка 0,05 Ом. Основные технические характеристики прибора приведены в табл.1.

 

Таблица 1. Технические характеристики прибора.

 Напряжение питания  6 В (4 элемента ААА)
 Ток потребления, не более  75 мА
 Размеры печатной платы  63х63 мм
 Диапазон измеряемых сопротивлений   0,1…3 Ом (х1), 1…30 Ом (х10)
 Вид индикации  Линейка из 10 светодиодов
 Формат индикации  «Светящийся столб»/«бегающая точка»

 

Принцип работы

Принципиальная схема прибора показана на рис. 1. Питание прибора включается выключателем SW2. На микросхеме DA1 [HEF4049BP] собран генератор импульсов, работающий на частоте около 80~кГц. С выхода генератора (выводы 2, 4, 6, 11, 15 DA1) сигнал поступает через разделительный конденсатор С3, токоограничивающий резистор R3 [или R2, в зависимости от предела измерения] и переключатель SW1 на тестируемый конденсатор. Переключатель SW1 служит для переключения диапазонов измерения прибора. Так как значения измеряемых сопротивлений много меньше номиналов токоограничивающих резисторов, можно считать, что конденсатор тестируется фиксированным током. В этом случае напряжение на конденсаторе прямо пропорционально его комплексному сопротивлению.

Рис.1. Принципиальная схема прибора

 

Сигнал с конденсатора поступает на микросхему DA2 [КР157ДА1], которая представляет собой сдвоенный линейный детектор с динамическим диапазоном более 50 дБ. Здесь эта микросхема использована в нестандартном включении. Одна ее половина включена в режиме линейного усилителя переменного тока с коэффициентом усиления около 10, а другая в режиме линейного детектора. Такое включение позволило увеличить чувствительность прибора без увеличения постоянного смещения на выходе детектора.

С выхода линейного выпрямителя сигнал поступает на сглаживающий фильтр R9, C7 и далее на вход логарифмического индикатора на микросхеме DA3 [LM3915]. Значения сигнала с шагом 3 дБ отображаются линейкой из 10 светодиодов. Использование логарифмического индикатора позволило обеспечить широкий диапазон измеряемых значений при относительно небольшом числе светодиодов индикации. Особенностью включения микросхемы является то, что опорное напряжение на вывод 6 микросхемы подается не от внутреннего стабилизатора, а с делителя R10, R12, подключенного непосредственно к шине питания. При таком включении при снижении напряжения питания повышается чувствительность индикатора. Одновременно при этом снижается выходное напряжение генератора на микросхеме DA1. Оба эти эффекта компенсируют друг друга, и поэтому удается обеспечить правильные показания прибора при изменении напряжения питания без использования дополнительных стабилизаторов. Яркость свечения светодиодов индикатора задается резистором R11.

Суммарный потребляемый прибором ток определяется главным образом током потребления светодиодов индикации. На плате предусмотрена съемная перемычка J1, определяющая режим работы индикатора. При установленной перемычке индикатор работает в режиме «светящийся столб», а при снятой - в более экономичном режиме «бегающая точка».

Диоды D1 и D2 предназначены для защиты прибора при подключении его к неразряженным конденсаторам. С той же целью рекомендуется использовать конденсаторы C3 и C4 на рабочее напряжение не менее 250 В.

 

Конструкция прибора

 

    

Рис.2. Внешний вид и внутренняя компоновка прибора для проверки качества электролитических конденсаторов.

 

Прибор выполнен в стандартном корпусе BOX-G080 размером 120х70х20 мм. В корпусе закреплена печатная плата размером 63х63 мм и кассета на 4 батареи размера ААА. Чертеж печатной платы и расположение элементов показаны на рис.3 и 4 соответственно.

 

Рис.3. Чертеж печатной платы.

 

Рис.4. Расположение элементов.

 

Сборка прибора производится в следующей последовательности:

  • срежьте у печатной платы два угла по пунктирным линиям;
  • временно установите печатную плату в корпус и, используя ее как трафарет, просверлите для светодиодов 10 отверстий Ф3 мм;
  • извлеките печатную плату из корпуса и смонтируйте на ней радиокомпоненты, за исключением светодиодов;
  • впаяйте провода щупов в контактные отверстия 1-2 и 3-4. Перевейте между собой с шагом 5-8 мм провода подходящие к контактам 1 и 3. Подпаяйте к зажимам типа «крокодил» провода, подходящие к контактам 1-3 и 2-4. Провода должны соединяться между собой непосредственно на зажимах;
  • в контактные отверстия светодиодов запаяйте проволочные штыри согласно рис.5 (можно использовать обрезки от выводов элементов), подпаяйте кассету питания;
  • в отверстия корпуса вставьте светодиоды, смонтируйте плату в корпусе и распаяйте светодиоды (рис.5) в соответствии со схемой;
  • приклейте на двусторонний скотч кассету с батареями (может потребоваться удаление неиспользуемых стоек в корпусе);
  • проверьте правильность монтажа;
  • сделайте в корпусе отверстия для переключателей и проводов щупов и соберите корпус;
  • включите питание.

Правильно собранный прибор не требует настройки. Его работоспособность можно проверить, например, при помощи низкоомного безиндуктивного резистора известного номинала, например 1,5 Ом. При подключении такого резистора к щупам прибора, он должен показывать правильное значение номинала. При необходимости чувствительность прибора на шкале х1 можно подстроить изменяя номинал резистора R2, а на шкале х10 - изменяя номинал резистора R3. Калибровочная шкала прибора приведена в табл.2.

 

Рис.5. Способ установки светодиодов.

 

Таблица 2. Калибровочная шкала прибора.

 Порядковый номер светодиода 
 Сопротивление, Ом 
1:10
1:1
HL1
0,1
1,3
HL2
0,2
1,9
HL3
0,3
2,7
HL4
0,4
3,8
HL5
0,5
5,3
HL6
0,8
7,5
HL7
1,1
10,6
HL8
1,5
15
HL9
2,1
21,2
HL10
3
30

 

Некоторые замечания по использованию прибора

Если в своей работе вы чаще пользуетесь прибором для внутрисхемной проверки конденсаторов, то удобнее сделать щупы в виде вилки из двух острых иголок с возможностью изменения расстояния между ними в пределах 3…20 мм.

Практика использования прибора показала, что большинство отказов электролитических конденсаторов успешно диагностируется с помощью описанного тестера. Но некоторые виды отказов, такие как повышенные токи утечки и короткие замыкания, не обнаруживаются им. Кроме того, исправные конденсаторы различных номиналов и на разные напряжения имеют разные допустимые значения ESR. Поэтому, чтобы избежать ошибок, при принятии окончательного решения рекомендуется сравнить результаты измерений с цифрами, приведенными в таблице 3. Эта таблица ориентировочная, реальные значения в ней зависят от производителя, типа конденсаторов и даже от допустимого температурного диапазона. В процессе практической работы Вы сможете сами откорректировать ее.

 

Таблица 3. Максимально допустимые значения ESR (Ом) для новых электролитических конденсаторов в зависимости от их номинала и допустимого напряжения.

 

Номинал, мкФ
Напряжение,В
10
16
25
35
63
100 
250
1 мкФ
 
 
 
14
16
18
20
2,2 мкФ
 
 
6
8
10
10
10
4,7 мкФ
 
 
15
7,5
4,2
2,3
5
10 мкФ
 
8
5,3
3,2
2,4
3,0
2,5
22 мкФ
5,4
3,6
2,1
1,5
1,5
1,5
1
47 мкФ
2,2
1,6
1,2
0,68
0,56
0,7
0,8
100 мкФ
1,2
0,7
0,32
0,32
0,3
0,15
0,8
220 мкФ
0,6
0,33
0,23
0,17
0,16
0,09
0,5
470 мкФ
 0,24 
 0,18 
 0,12 
 0,09 
 0,09 
 0,05 
0,3
1000 мкФ
0,12
0,09
0,08
0,07
0,05
0,05
 
4700 мкФ
0,23
0,2
0,12
0,08
0,04
 
 
10000 мкФ
0,12
0,08
0,06
0,04
 
 
 

 

При измерении низкоомных проволочных резисторов нужно помнить, что измерение производится на переменном токе и на результат влияет индуктивность резисторов. Это не является недостатком прибора, а наоборот, позволяет более точно оценить возможность использования резисторов в высокочастотных схемах – импульсных преобразователях, усилителях, ШИМ- регуляторах.

Прибор поможет подобрать электролитические конденсаторы для высококачественных УНЧ по минимальному ESR. Сегодня существуют рекомендации по использованию в таких усилителях конденсаторов только от некоторых ведущих производителей. Использование прибора позволит подбирать конденсаторы по реальным характеристикам, а не ориентироваться на рекламируемый бренд.

Имеется и еще одно, довольно необычное, применение данного прибора – он позволяет оценить состояние батарей и аккумуляторов. Дело в том, что батареи, так же как и конденсаторы, имеют свое внутреннее сопротивление, которое составляет у свежих батарей величину 0,1…5 Ом в зависимости от типа и емкости батареи. При выработке батареи или аккумулятора это сопротивление существенно возрастает. Подбирая в аккумуляторную батарею элементы с близкими значениями ESR, Вы можете существенно увеличить срок ее службы.

Для облегчения самостоятельной сборки прибора подразделение Мастер Кит подготовило к выпуску набор NM8032, в который входит печатная плата, корпус и все необходимые компоненты.

ВНИМАНИЕ! При работе с прибором не забудьте убедиться, что ремонтируемое устройство выключено из сети и конденсаторы в нем разряжены!

 

Литература

1. Омельяненко А. Измеритель ESR электролитических конденсаторов, РЭТ, 2002, N2.

2. http://www.flippers.com/esrktmtr.html, ESR & Low Ohms Meter K 7204, Bob Parker.

3. Capacitor Wizard, Independence Electronics Inc., 1995.

4. Capacitor Equivalent Series Resistance - Methods of Measurement, Independence Electronics Inc., 1995.

5. http://www.anatekcorp.com/testequipment/esrtext.htm.

 

Материал опубликован в журнале Ремонт электронной техники 2002`06

Новинки

Популярное

Вы недавно смотрели

              
Рейтинг@Mail.ru Яндекс.Метрика